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Polycatenated Two-Dimensional Polyrotaxane Net Scheme 1
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One of the fascinating developments in supramolecular "& %f‘a n
chemistry during the last decade is the construction of inter- H‘;\gm end 5
locked molecular structures such as catenanes, rotaxanes, and %
knots! Pioneering work by Sauvage and Stoddart demonstrated 4

that such elegant structures can be achieved relatively easily

by use of metal templating and/or employment of noncovalent  The formation of the pseudorotaxaBgby threading cucur-
interactions. Concurrent with this has been development of 2D pjturil (1)1 with N,N-bis(4-pyridylmethyl)-1,4-diaminobutane

or 3D networks composed of linking metal centers and rigid dihydronitrate 2),12 followed by the reaction o with AGNOs

organic bridging components? These metatorganic frame-  yielded 4 (Scheme 13 The X-ray crystal structuté of 4
work materials often exhibit interesting electrdhémd magnetic  reveals an unprecedented polyrotaxane in which cucurbituril
propertie8 as well as zeolite-like propertié8>° beads are threaded on a 2D coordination polymer network

We have recently reportétla simple one-step approach to  (Figure 1). The 2D network consists of large edge-sharing
construct 1D polyrotaxane coordination polymers containing a chair-shaped hexagons with a Ag(l) ion at each corner and a
cyclic “bead” in every structural unit of the polymer chain. It molecule of2 at each edge connecting two Ag(l) ions. The
involves the formation of a pseudorotaxane by threading a mean length of the edge is 20.9 A, and the mean separation of
molecular “bead” with a “string” having suitable functional the opposite corners is 38.0 A. Each silver ion, sitting on a
groups at both ends followed by the formation of a 1D mirror plane, is coordinated by three “supermolecul@’and
polyrotaxane coordination polymer by allowing the end func- a nitrate ion in a distorted tetrahedral geom&tnA cucurbituril
tional groups of the pseudorotaxane to coordinate to the metalbead is held tightly at the middle of each edge of the hexagon
centers. Extending this approach, we now constructed anpy strong hydrogen bonds between the protonated amine
unprecedented polyrotaxane containing cyclic beads threadedhitrogen atoms of the string2( and the oxygen atoms of
on 2D coordination polymer networks. Moreover, the 2D cucurbituril. The 2D polyrotaxane network forms layers stacked
polyrotaxane networks are fully interlocked; therefore, it on each other along the [011] direction with a mean interplane
represents the first example of polycatenated polyrotaxane netsseparation of 9.87 A (Figure 2). There is another 2D polyro-
Herein, we report the self-assembly and X-ray crystal structure taxane network (denotel) almost perpendicular to the first

of the novel supramolecular species. one (denoted\). The dihedral angle between the mean planes
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Figure 1. Cucurbituril “beads” threaded onto the 2D coordination
polymer network ind. The nitrate ion coordinated to each silver ion is
omitted for clarity. The mean length of the edge of the hexagon is
20.9 A, and the mean separation of the opposite corners is 38.0 A.
Color codes: carbon (2D network), gray; carbon (cucurbituril bead),
green; nitrogen, blue; oxygen, red; silver, brown.

Figure 2. Schematic representation of stacking of the 2D polyrotaxane
layers in4. Small circles represent silver ions and lines represent
pseudorotaxanglinking two silver ions. The mean separation between
the layers is 9.8 A.

lustrated in Figure 3: a hexagon belonging to the netwlrk
(blue) interlocked with four hexagons belongingBdred) and
vice versa Although interlocking of simple 2D networks has
been known (polycatenated 2D netsj,the present structure
is the first example opolycatenated 2D polyrotaxane nets
Counteranions seem to play an important role in determining
the solid state structure, since when silver tosylate is used instea
of silver nitrate to react with the pseudorotaxa®ehe 1D
polyrotaxane coordination polyméris formed (Scheme 1). In
the structure ob (Figure S3, Supporting Informatiolf)a two-
coordinate Ag ion links two molecules of pseudorotaxaBe

Communications to the Editor

Figure 3. Schematic illustration representing interlocking of the
hexagons ik a hexagon belonging to the netwdkk(blue) interlocked

with four hexagons belonging 8 (red) andvice versa As in Figure

2, small circles represent silver ions and lines represent pseudorotaxane
3 linking two silver ions.

to form an 1D polyrotaxane coordination polymer similar to
the one formed with Cif ion.1® The major structural difference
between the two 1D polyrotaxane coordination polymers is that
the two pyridyl units are coordinated to the silver ion itrans
geometry whereas they are bound to the copper ion d@isa
geometny® As a result, the former has an almost straight
polymer chain whereas the latter exhibits a zigzag shaped
polymer chairnt?

In conclusion, we present here an unprecedented polycat-
enated 2D polyrotaxane net in which cyclic beads are threaded
onto 2D coordination polymer networks that are in turn fully
interlocked with themselves. This interlocked supramolecular
network provides not only an intriguing example of chemical
topology but also a new possibility for designing “smart” solid
state materials’ We continue to explore unusual supramo-
lecular species by utilizing the principles of self-assembly and
coordination chemistry.

Acknowledgment. This work is dedicated to the memory of Dr.
Hogil Kim, the first president of POSTECH. We gratefully acknowl-
edge Korea Science and Engineering Foundation and Ministry of
Education (Basic Science Research Program BSRI-96-3436) for support
of this work.

Supporting Information Available: X-ray crystallographic tables
of atomic coordinates, thermal parameters, bond distances and angles
for 4 and5 (25 pages). See any current masthead page for ordering
and Internet access instructions.

d]A9630962

(16) See Supporting Information.

(17) (a) Lehn, J.-MSupramolecular Chemistry’ CH: Weinhein, 1995.
(b) Lehn, J.-M.Sciencel993 260, 1762. (c) Vatle, F. Supramolecular
Chemistry Wiley: Chichester, 1993. (d) Whitesides, G. M.; Mathias, J.
P.; Seto, C. TSciencel991, 254, 1312.



